Quantile
Given a probability distribution $P$ over a real-valued random variable $\theta$, the $(1 - \delta)$ quantile of the distribution, denoted as:
\[\text{Quantile}_{1 - \delta}(P)\]is the smallest value $q$ such that:
\[\mathbb{P}(\theta \leq q) \geq 1 - \delta.\]In other words, $q$ is a threshold below which the random variable $\theta$ falls with probability at least $1 - \delta$.
For a Beta distribution $\theta \sim \text{Beta}(\alpha, \beta)$, this quantile can be computed as:
\[\text{Quantile}_{1 - \delta}\left( \text{Beta}(\alpha, \beta) \right) = \texttt{beta.ppf}(1 - \delta, \alpha, \beta)\]where beta.ppf
is the percent-point function (inverse CDF) from standard statistical libraries.1